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Abstract 

In epidemiology, the search for new behavior of infectious agents, processes and 
mechanisms of diffusion of infection of emerging infectious diseases caused by global 
warming have already led to tangible results. This paper proposes a dynamic endemic model 
Susceptible, Exposed, Precontaged, Infected, Retired, Susceptible (SEPIRS). This model is 
specialized in epidemics that persist for a long time and in cases where the infection spreads 
directly: first between pre-contagious individuals (asymptomatic) and susceptible 
individuals, second between infectious individuals (symptomatic) and susceptible 
individuals. This model characterises the individual recovering from infection to develop a 
temporary immunity and then become susceptible again after some time. 

Keywords:  Epidemic modeling, compartmental models, global warming, microorganisms 

 

Introduction  

In epidemiology, making a model sufficiently close to reality is a crucial challenge 
because each infectious disease has its own behaviour. There are infectious diseases that are 
resistant to vaccines and that generate temporary immunity. This is known as the 
bifurcation of disease (Greenhalgh (1997)). And there are infectious diseases that have a 
natural behaviour that the infectious individual, once cured. He does not acquire a 
permanent immunity, but he becomes susceptible again after some time (J.M.M.ONDO 
(2012)). In any case, this behaviour probably generates a second or even a third wave of the 
same epidemic in the same population with different periods. This requires taking into 
account the existence of individuals who were immune before the epidemic. For before a 
second wave of the epidemic begins, there are probably groups of temporarily immune 
individuals in the population. (Greenhalgh (1997)) attempted to solve this problem by 
working on Hopf bifurcations for the Susceptible, Exposed, Infected, Retired, Susceptible 
(SEIRS) model, under the hypothesis that some of the susceptible individuals are 
vaccinated and that there is the acquisition of a temporary immunity. The model is 
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improved by (Melesse and Gumel (2010)) by studying the asymptotic behaviour of such a 
model with multiple infection steps. They obtained a famous Susceptible, Exposed, 
Infected, Retired, Susceptible (SEIRS) model of today. But nowadays, this model has a 
weakness, because today, there is an infectious disease that spreads with a very rapid speed 
and it is transmitted even between individuals who do not yet show symptoms (INSPQ 
(2021)), (WELKER (2020)). This is what (OMS (2019)) and (Hu et al. (2020)) called a new 
strain of coronavirus or COVID-19. This is incompatible for the SEIRS model. 

 Moreover, the search for new behaviour of infectious agents, processes and 
mechanisms of diffusion of infection of emerging infectious diseases caused by global 
warming has already led to tangible results in our work (Masonova et al. (2021a)) and 
(Masonova et al. (2021b)). In the present work, we propose a model adapted to this new 
behaviour of infectious agents to remedy the weakness of existing models in the literature. 
In the following, our work is divided into ten sections. Section 2 presents the dynamic 
process of disease infection. We present the different Definitions of hypotheses in Section 
3. The objective of proposed model of epidemic is presented in section 4. Section 5 propose 
the endemic model or SEPIRS. We end with a short conclusion in section 6. 

 

New dynamic process of infection of emerging and re-emerging infectious diseases 

According to our work of Masonova et al. (2021a) and Masonova et al. (2021b) that 
we  accept that an individual is affected by an infectious disease when he or she comes into 
contact with 
a pathogen, which may be of various kinds (an infected individual, a mosquito, a well, etc.). 
We note that the modification and genetic change of pathogen micro-organisms caused by 
global warming will lead to the advancement or acceleration of the contagiousness period 
which we call "early or premature contagion or precontagion" (see figure (1)). This means 
that the infectious disease is spread not only by the sick individual (who shows symptoms) 
but also by the healthy carrier individual. This will cause the epidemic to spread very 
rapidly. We consider here that the change in the transfer of infection brought about by the 
new behaviour of the pathogens does not change the total duration of the contraction of 
the disease on the individual. But it does increase the time of the contagious period and 
decrease the latent period. 

The character precontagious of an individual is acquired only after a period of 
latency after infection. And the infected individual also remains contagious for some time 
: he is then either ready to contract the disease again, or resistant to a new infection, or 
dead. 

1 Mechanism of disease progression 

According to our work of Masonova et al. (2021a) and Masonova et al. (2021b) that 
the  mechanism of evolution of an epidemic is presented in the following stages : 

− Global warming has increased the temperature of the earth’s surface. 

− The increase in temperature has impacted the environment of living beings, 
including microorganisms. 
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−  In the micro-organisms, those that are not killed by the increase in temperature, 
have managed to adapt, to mutate and they have sought the new favorable 
environment to live in (in the human organism). 

−  When micro-organisms arrive in human organisms, the mutants are able to adapt 
and multiply very quickly. 

−  After the latent phase, without having yet to cause the prodrome in the host 
organism, they can already contaminate other organisms from saliva, sexual 
intercourse, sneezing, blood, a few ordinary coughs, etc. i.e. a healthy carrier can 
contaminate the population if he is already infected. 

−  The infected individual remains contagious until the onset of symptoms of the 
disease and has continued to be contagious until some time after recovery or death. 

In order to provide our solution to the study of the modelling of this phenomenon, 
we make the following definitions of assumptions that complement the definition of the 
susceptible, exposed, infected compartments and the latency period. 

3 Definitions of the study’s assumptions 

Definition .1. An individual who has been infected with the disease pathogen and is capable 
of transmitting it, but has no symptoms, is called a precontaminated or precontagious 
individual. 

Definition .2. Précontaged individuals are assigned to this compartment with the rate of 
precontagion called the precontagion rate. Precontagious individuals are assigned to this compartment 
with the rate k called precontagiousness rate. 

The letter P will be used to refer to individuals who are infected and contagious, 
but do not yet show symptoms of disease. 

Definition .3. The period of precontagiousness is the time during which an infected 
person has no symptoms but can transmit the disease to another. 

Definition .4. The infected compartment represents those who are not only already 
infected and have shown symptoms of the disease, but also capable of transmitting the disease back 
into the population. 

Definition .5. The period of contagiousness is a distinct phase of time when the sick 
individual (person who has the symptoms of the disease and whose health is impaired) transmits a 
disease to the other individual. 
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The figure (1) represents schematically the different phases of the disease. 

  

 

 

 

 

 

 

 

 

 

 

FIG. 1: Representation of the contagion process «SEPIR» 

 

Objective of proposed model of epidemic spread 

In this section, we focus on modelling the new phenomenon of the spread of 
infectious diseases caused by global warming in a population. On the one hand, we 
highlight the new dynamic process of the infection of emerging infectious diseases, on the 
other hand, we present the different hypotheses of the infectious disease behaviours. The 
present study consists in proposing a propagation model able to understand the different 
behaviours of the infectious disease and the new mechanism of the rapidity of the infection 
diffusion. The model assumes that the population is constant and homogeneous (no age 
structure, no spatial or social structure).  

Our objective is to develop a new compartmental model by integrating the above 
assumption of new dynamic infection processes into the SEIRS compartmental model in 
the literature. Indeed, this integration effectively contributes to the modelling and 
simulation of any form of emerging diseases caused by global warming. In this work, 
epidemic modelling only considers cases where infection spreads directly : first, between 
precontagious (precontaminated) and susceptible individuals ; second, between infectious 
(infected) and susceptible individuals. 

The endemic model of SEPIRS  

In this type of model, we consider that the disease persists and continues to spread 
during a time interval 
[t, t + ∆t] (equivalent to a month or a quarter or a semester or a year). This leads us to 
consider, over time, the birth rate of the population, the natural mortality of the population 
and the loss of infectivity of the disease in the population. And we consider that emigration 
is balanced to immigration of inhabitants. 
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1 Definition of the assumptions of the endemic model of SEPIRS 

In order to design our SEPIRS model, we make the following assumptions :  

• A1 : The size of the population is equal to N (assumed fixed) ; 

•  A2 : The time variable t is of discrete type, such that t ∈T or T is the total duration. 

•  A3 : The period of time ∆t = dt represents hours or days or weeks. 

•  A4 : At each time t, the population N is subdivided into four compartments : S(t) 
: set of susceptible individuals, E(t) : set of exposed individuals, P(t) : set of 
precontaged individuals, I(t) : set of infected individuals and R(t) : set of Recovered 
or Withdrawn individuals  with S(0) = S0 > 0, P (0) = P0 > 0 and/or I(0) = I0 > 0 and 
R0 ≥ 0 in the case of a second or even third wave of the same epidemic ; 

•  A5 : We assume that each susceptible individual in a ∆t period is exposed, 
precontaged and then infected and the cured individual is temporarily immune to 
the infection, and becomes susceptible again after some time ; 

•  A6 : The transmission of the infection is done through a direct contact between : 
firstly, susceptible S and one or more precontaged P with a factor βp proportionality 
(also called rate of precontagion or rate of transmission or rate of transmission from 
the susceptible to the infected), secondly, susceptible S and one or more infected I 
with a factor βi of proportionality (also called rate of infection) and it is admitted 
that a factor β is the rate of total transmission or of exposure such as 

 β = βp + βi. 

• A7 : During the time interval [t,  t + ∆t], the population under study is assumed to 
increase (there are new births) with the birth rate δ. It also suffers the natural death 
on the susceptible population and temporarily recovery with the mortality rate µ 
and it suffers in addition the loss of infectivity of the disease only for the sick 
(infected) individuals with the mortality rate λ. Here, in relation to the 
aggressiveness of the micro-organism, it is difficult to determine the cause of death 
of each individual in the Exposed and Precontaged compartments if it is natural or 
related to this disease. Therefore, we consider here the deaths in these two 
compartments is already counted and ejected in the rate λ ;  

•  A8 : Compartment D is used to store individuals who have died from the disease 
with a rate of λ in the time interval [t, t + ∆t] ; 

•  A9 : We consider that a constant average number of contacts cannot be applied to 
all diseases : we can generalise by putting the proportionality coefficients βp and βi 
which depend on N. 

2 Schematic of the endemic SEPIRS model 

We admit that an infected individual and a precontaminated individual meet on 
average β(S/N) individuals susceptible to be exposed per unit of time, with β = βp + βi. 

We note : β > 0 : the rate of exposure (or of transmission from the susceptible to 
the exposed), k > 0 : the rate of precontagiousness (or of transmission from the exposed to 
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the precontaged), ν > 0 : the rate of contagiousness (or of transmission from the 
precontaged to the infected), r > 0 : the rate of retired or recovery or temporary immunity 
(or transmission from the infected to the Retired), s > 0 : the rate of susceptibility (or 
transmission from the Retired to the susceptible), λ > 0 : the rate of infected to die, µ > 0 : 
the rate of natural mortality, δ > 0 : the rate of birth.  

The endemic model is schematized as in the figure (2) below : 

 
 

 

 

  

 FIG. 2: Drawing of the SEPIRS endemic model 

3. Differential equation representation of the endemic SEPIRS model  

According to the hypothesis (A7) in section (5) above, we consider that during the 
time interval dt, the Susceptible compartment has increased in the number δN of newborns 
and in the number sR of individuals losing their immunity. But at the same time, it loses 

the number 
𝑆

𝑁
(𝛽pP + 𝛽iI)   of individuals exposed by the disease and the number µS of 

individuals who died naturally. According to the hypothesis (A6), we consider the new cases 

reached by the infection during the time interval dt which are equal to 
𝛽𝒊

𝑵
𝑺𝑰. And the new 

cases reached by the precontagion during the interval of time dt which are equal to 
𝛽𝒑

𝑵
𝑺𝑷.. 

We obtain the new cases exposed to the disease during the time interval dt which will be 

equal to 
𝛽𝒑

𝑵
𝑺𝑷 +

𝛽𝒊

𝑵
𝑺𝑰 =

𝑺

𝑵
(𝛽𝒑𝑷 + 𝛽𝒊𝑰). According to hypothesis (A5), we consider that 

during the time interval dt the compartment precontaged by the disease has increased in 
number kE individuals, and, at the same time, it loses the number νP of sick or infected 
individuals. According to hypothesis (A5) and (A7), we consider that during the time 
interval dt the compartment Infected has increased by νP of precontaged individuals, and, 
at the same time, it loses the number rI of the epidemic deaths and the number rI of the 
cured individuals. According to the hypothesis (A4), (A5) and (A7), we consider that during 
the time interval dt the compartment of Retired benefits the number R0 of the temporary 
immunized individuals and it increased the number rI of the infected individuals, and, at 
the same time, it loses the number sR of the individuals lost their immunity and the number 
rI of the naturally dead individuals. And it represents in the form of the following system 
of differential equations (1): 
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{
 
 
 
 
 
 

 
 
 
 
 
 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝛿𝑁 + 𝑠𝑅(𝑡)  −  µ𝑆(𝑡) −

𝑺

𝑵
(𝛽𝒑𝑷(𝒕) + 𝛽𝒊𝑰(𝒕)) ;                                                             

𝑑𝐸(𝑡)

𝑑𝑡 
=
𝑺

𝑵
(𝛽𝒑𝑷(𝒕) + 𝛽𝒊𝑰(𝒕)) −  𝑘𝐸(𝑡) ;                                                                                          

𝑑𝑃(𝑡)

𝑑𝑡
= 𝑘𝐸(𝑡) −  𝜈𝑃(𝑡) ;                                                                                                            (1)

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜈𝑃(𝑡) − (𝑟 + 𝜆)𝐼(𝑡) ;                                                                                                                

  

𝑑𝑅(𝑡)

𝑑𝑡
= 𝑅0 + 𝑟𝐼(𝑡) − (𝜇 + 𝑠)𝑅(𝑡)  ;

𝑑𝐷(𝑡)

𝑑𝑡
= 𝜆𝐼(𝑡).                                    

                                                                                                    

 

 

We assume the initial conditions : S(0) = S0; E(0) = E0; P (0) = P0; I(0) = I0; R(0) = 
R0 and the 
biological domain : Ω ={(𝑆, 𝐸, 𝑃, 𝐼, 𝑅), 𝑆 > 0, 𝑃 > 0, 𝐼 > 0, 𝑅 > 0} which is positively 
invariant for the system (a set G is said to be positively invariant if ∀x0 ∈G the trajectory 
passing through x0 is contained in G after x0 : if x is the solution of the system 𝑋′ = 𝐹(𝑋) (with F 
of class𝐶∞) verifying x(0) = x0, then ∀t ≥ 0, x(t)∈G ). By studying the system (1), we obtain the 
following theorem : 

Theorem .1. Let ∀N, δ, µ, λ, β𝐩, β𝐢, k, ν, g, r, s ∈ ℝ and R0 = 0, the absence of infection 
or I=0, the endemic model SEPI=SEPIS=SEPIR=SEPIRS. 

Proof : 

  It is obvious that if we put I=0 and R0 = 0 in the four model, they become identical. 

5.4 Simulation of the SEPIRS model  

The different curves below (obtained with Scilab) already give us an idea of the 
evolution of the epidemic. For the simulation, we consider here to have an individual 
precontaged at time t = 0 with N=1000, δ = 0,3 ; βp = 0,2 ; βi = 0,1 ; k=0,4 ; ν = 0,2 ; µ = 
0,2 ; λ = 0,3 ; r = 0,5 ; R0 = 0 et s=0,3. We consider a period of time t which depends on 
the unit of the transmission rates, and it is equivalent to a day or a week or a month or a 
quarter or a semester (with unit time t day or week or month or quarter or semester). By 
running the simulation, we obtain the following curves : 
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FIG. 3: Curves of S(t) coloured in red and E(t) in blue 

Interpretation : 

From the figure (3), we note that even with low pre-contagion and infection rates, 
the epidemic evolves with phenomenal and very rapid speed. Even with average birth rates 
( δ = 0,3)  added to the Susceptible compartment, any Susceptible population is already 
exposed after only 2e period of time t. 

 

 

 

 

 

 

 

 

 

 

  

 

FIG. 4: Curve of E(t) during a phase of the epidemic 

Interpretation : 

From figure (4), after the phenomenal evolution of the epidemic up to the 1er time 
period t, the curve of the Exposé decreases, and stabilises and becomes endemic after the 
7e time period t of the epidemic. 
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FIG. 5: Curves of I(t) coloured in red and P(t) in blue 

Interpretation : 

From the figure (5), it appears that even after the 7e  period of time t, the curves of 
the Precontaged and the Infected still believe each other and this is a sign of a pandemic. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 6: Curves of D(t) coloured in red and R(t) in blue 

Interpretation : 

From the figure (6), it appears that after the 7e period of time t, the curves of R(t) 
and D(t) are still increasing and we have recorded almost 150 individuals are recovered and 
temporarily immune from this disease, and almost 280 deaths related to this disease in 7e 
period of time t only. 

5.5 Study of the equilibrium point of the SEPIRS endemic model  

Lyapunov in (J.M.M.ONDO (2012)), defines the equilibrium point as follows : 
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Définition .1. Consider U; a non empty open of Rn containing 0, and I a non empty 
interval of R, not bounded on the right. Let the two equations below (2) and (3) : 

 
𝑥̇ = 𝑓(𝑥)                                                                                  (2)  

𝑥̇ = 𝑓(𝑡, 𝑥)                                                                               (3) 

where the functions f : U→Rn for the system (2) and f : I × U→  Rn for the system (3) sare 
assumed to be continuous. 
A point "a" is an equilibrium point or equilibrium state or singular point of the system (2) (resp. (3)), 
if f(a) = 0 ( resp. if, for all t ∈I,  f(t, a) = 0 ). 

From the definition (1) of the equilibrium point above, we obtain the following 
proposition : 

Proposition 1. Let N>0. Then, the system (1), with the condition S(0) = S0, E(0) = E0, P 
(0) = P0,  I(0) = I0, R(0) = R0 and Ω = {(𝑆, 𝐸, 𝑃, 𝑅), 𝑆 > 0, 𝑃 > 0, 𝐼 >  0, 𝑅 >  0}, admits 
a unique solution (S,E,P,I,R) defined on [0, +∞[. 
Proof : 

Equilibrium points are calculated in the absence of infection and/or precontagion. 
The equilibrium point of the model (1) satisfies : 

{
 
 
 

 
 
 𝛿𝑁 + 𝑠𝑅 −  µ𝑆 −

𝑺

𝑵
(𝛽𝒑𝑷+ 𝛽𝒊𝑰)  = 𝟎                                                                         

𝑺

𝑵
(𝛽𝒑𝑷 + 𝛽𝒊𝑰) −  𝑘𝐸 = 0                                                                                                

𝑘𝐸 −  𝜈𝑃 = 0                                                                                                                    (4)

𝜈𝑃 − (𝑟 + 𝜆)𝐼 = 0                                                                                                                  
  𝑅0 + 𝑟𝐼 − (𝜇 + 𝑠)𝑅 = 0                                                                                                          

 

 

In the absence of the infection I=0 and the pre-contagion P=0, we obtain the 
following proposition : 

Corollary .1. Let N>0, in the absence of infection I=0 and precontagion P=0, then : 

− At t=0 and R(0) = R0, system (1) admits the equilibrium point : 𝐸0 = 

(
𝛿𝑁+  𝑠𝑅0 

𝜇
, 0, 0, 0, 𝑅0)

𝑇

; 

− But if at t=0 and R0 = 0, then the equilibrium point becomes   𝐸0 = (
𝛿𝑁 

𝜇
, 0, 0, 0,0)

𝑇

. 

Proof : 

By replacing P=0 and I=0 in the equations of the system (4), we obtain the 
equilibrium point  :            𝐸0 = ( 𝑆̂, 𝐸̂, 𝑃̂, 𝐼, 𝑅̂) as follows : 𝐸0 = 

(
𝛿𝑁+  𝑠𝑅0 

𝜇
, 0, 0, 0, 𝑅0)

𝑇

considering that in t=0, R(0) =𝑅0. 

But if at t=0 and R0 = 0, then the equilibrium point becomes 𝐸0 = (
𝛿𝑁 

𝜇
, 0, 0, 0,0)

𝑇

. 
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In the presence of the precontagion P≠0 and in the absence of the infection I = 0, 
we obtain the 
following corollary  : 

Corollary .2.  Let N>0, in the absence of the infection I=0 and in the presence of the 
precontagion P≠0, then : 

−  the system (1) admits the following equilibrium point 

 𝐸𝑝
∗ = (

𝜈𝑁 

𝛽p
,   
𝛿𝑁𝛽p+ 𝑠𝛽p𝑅0− µ𝜈𝑁 

𝑘𝛽p
,
𝛿𝑁𝛽p+ 𝑠𝛽p𝑅0− µ𝜈𝑁 

𝜈𝛽p
, 0 ,   𝑅0)

𝑇

; 

− Moreover, for all t>0 we have 𝛿𝑁𝛽p +  𝑠𝛽p𝑅0 > µ𝜈𝑁. 

Proof : 

By replacing I=0 the system (4) becomes : 

{
 
 

 
 𝛿𝑁 + 𝑠𝑅 −  µ𝑆 −

𝛽𝒑𝑺𝑷

𝑵
 = 𝟎                                                                                    

𝛽𝒑𝑺𝑷

𝑵
−  𝑘𝐸 = 0                                                                                              (5)    

𝑘𝐸 −  𝜈𝑃 = 0                                                                                                                  

 

The third equation of the system (5), implies  : 𝐸∗ =
𝜈𝑃

𝑘
. 

Replacing 𝐸∗  in the second equation of (5) with P≠0, we obtain : 𝑆∗ =
𝜈𝑁

𝛽p
. 

Replacing 𝑆∗ in the first equation of (5), we obtain : 𝑷∗ =
𝛿𝑁𝛽p+ 𝑠𝛽p𝑅0− µ𝜈𝑁 

𝜈𝛽p
 with 

I=0 implies that R(t) still equals 𝑅0. 

Replacing 𝑷∗ in 𝑬∗, we then have the equilibrium point 𝐸𝑝
∗ = (𝑆∗, 𝑬∗, 𝑷∗, 𝑹∗ ) as 

follows :  

𝐸𝑝
∗ = (

𝜈𝑁 

𝛽p
,   
𝛿𝑁𝛽p +  𝑠𝛽p𝑅0 −  µ𝜈𝑁 

𝑘𝛽p
,

𝛿𝑁𝛽p +  𝑠𝛽p𝑅0 −  µ𝜈𝑁 

𝜈𝛽p
, 0 ,   𝑅0)

𝑇

             (6) 

 

We note that 𝑆̂> 𝑆∗ :                                          
𝛿𝑁+ 𝑠𝑅0 

𝜇
>

𝜈𝑁 

𝛽p
.                                                         (7)  

From (7), we deduce that :                  𝑬∗ =
𝛿𝑁𝛽p+ 𝑠𝛽p𝑅0− µ𝜈𝑁 

𝑘𝛽p
>

0.                                               (8)  

And                                                     𝑷∗ =
𝛿𝑁𝛽p+ 𝑠𝛽p𝑅0− µ𝜈𝑁 

𝜈𝛽p
>

0.                                                (9)  
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According to (7),(8),(9), we then have 𝛿𝑁𝛽p +  𝑠𝛽p𝑅0 > µ𝜈𝑁. 

In the presence of the precontagion P≠0 and the infection I≠0, we obtain the 
following corollary: 

Corollary .3. Let N>0, in the presence of the precontagion P≠0 and the infection I≠0, 
then : 

− the system (1) admits the following endemic equilibrium point  𝐸𝒑
• =   (𝑆•, 𝐸•, 𝑃•, 𝐼•, 𝑅•) 

with 

𝑆• =
𝛎𝐍(𝐫 + 𝛌)

𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣
 , 

𝐸• =
𝛎(𝐫 + 𝛌) ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

𝑘(µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣
2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)

 , 

𝑃• =
(𝐫 + 𝛌) ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

(µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)
, 

𝐼• =
𝛎 ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

(µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)
 , 

𝑅• = 
𝑅0𝐚 +  𝐫𝛎 ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

(µ + 𝐬)𝟐(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)
 , 

With 𝑎 = (µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣
2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) ; 

 

− Moreover, for all t>0 we have 𝛅𝐍𝛽𝑝(𝐫 + 𝛌) +  𝛅𝐍𝛽𝑖𝑣 > µ𝛎𝐍(𝐫 + 𝛌). 

Proof : 

If P≠0 and I≠0, the third, fourth and fifth equations of the system (4) involve :  𝐸• =
𝜈𝑃

𝑘
, 𝐼• 

=
𝜈𝑃

𝑟+𝜆
  and 𝑅• =

𝑅0+𝑟𝐼

µ+𝐬
=

(𝐫+𝛌)𝑅0+𝑟𝛎𝐏

(µ+𝐬)(𝐫+𝛌)
 . 

Carry 𝐸• and 𝐼• into the second equation of (4) and we get : 𝑆• =
𝛎𝐍(𝐫+𝛌)

𝛽𝑝(𝐫+𝛌)+𝛽𝑖𝑣
. 

Replacing 𝑆•, 𝐼•  and 𝑅• in the first equation of (4) we get : 

𝑃• =
(𝐫 + 𝛌) ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

(µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣
2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)

. 

By replacing 𝑃• in 𝐼•  and 𝐸•, and 𝐼•  in 𝑅•, we obtain the endemic equilibrium 
point 𝐸𝒑

• as follows : 
 

𝐸𝒑
• =  (𝑆•, 𝐸•, 𝑃•, 𝐼•, 𝑅•)                                                                                      (10) 
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With  𝑆• =
𝛎𝐍(𝐫+𝛌)

𝛽𝑝(𝐫+𝛌)+𝛽𝑖𝑣
 , 

𝐸• =
𝛎(𝐫 + 𝛌) ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

𝑘(µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)
 , 

𝑃• =
(𝐫 + 𝛌) ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

(µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)
, 

𝐼• =
𝛎 ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

(µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣
2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)

 , 

𝑅• = 
𝑅0𝐚 +  𝐫𝛎 ((𝛅𝐍(µ + 𝐬) + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣) − µ𝛎𝐍(µ + 𝐬)(𝐫 + 𝛌))

(µ + 𝐬)𝟐(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝑣)
 , 

                      With 𝑎 = (µ + 𝐬)(𝐫 + 𝛌)(𝛽𝑝𝛎(𝐫 + 𝛌) + 𝛽𝑖𝑣
2) − 𝒔𝒓𝛎(𝛽𝑝(𝐫 + 𝛌) +

𝛽𝑖𝑣) 

Let us note 𝑆 ̂ > 𝑆• :                     
𝛿𝑁 

𝜇
>

𝛎𝐍(𝐫+𝛌)

𝛽𝑝(𝐫+𝛌)+𝛽𝑖𝑣
.                                                                                           (11) 

From (11) we deduce:                      𝐸• > 0, 𝑃•> 0, 𝐼• > 0 and 𝑅• > 0.                                                 
(12)  

According to (11),(12), we then have :  𝛅𝐍𝛽𝑝(𝐫 + 𝛌) +  𝛅𝐍𝛽𝑖𝑣 > µ𝛎𝐍(𝐫 + 𝛌).                                
(13) 

 

5.6 The basic reproduction number  𝓡𝟎 of the endemic model SEPIRS 

To find the ℛ0 of the SEPIRS endemic model, we apply the study condition in the 
work (L.Chahrazed (2002)) on ℛ0: 

− If ℛ0< 1, the equilibrium point E0 is locally asymptotically stable ; 

− If ℛ0 > 1, the equilibrium point E0 is unstable. 

First, we calculate the Jacobian matrix of the linearized system (1) at the equilibrium 
point E0 ignoring the death compartment and we obtain : 

𝑱 (
𝛿𝑁+𝑠𝑅0 

𝜇
, 0, 0, 0, 𝑅0) =

[
 
 
 
 
 
 −𝜇 𝟎 −

𝛽𝑝(𝛅𝐍+𝒔𝑅0)

𝑁𝜇
−
𝛽𝑖(𝛅𝐍+𝒔𝑅0)

𝐍𝜇
     𝒔

𝟎 −𝒌
𝛽𝑝(𝛅𝐍+𝒔𝑅0)

𝑁𝜇
       

𝛽𝑖(𝛅𝐍+𝒔𝑅0)

𝐍𝜇
       𝟎

𝟎
𝟎
𝟎

𝒌
𝟎
𝟎

     
−𝛎                       𝟎                    𝟎
𝛎            −(𝐫 + 𝛌)                𝟎
  𝟎                  𝒓           −(µ + 𝐬)]

 
 
 
 
 
 

                                 (14)  
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The characteristic equation of the system (1) in the vicinity of the equilibrium point 
E0 is as follows : 

𝒅𝒆𝒕(𝑱 − 𝜃𝐼)

=

[
 
 
 
 
 
 
 −𝜇 − 𝜃 𝟎 −

𝛽𝑝(𝛅𝐍 + 𝒔𝑅0)

𝑁𝜇
−
𝛽𝑖(𝛅𝐍 + 𝒔𝑅0)

𝐍𝜇
     𝒔

𝟎 −𝒌 − 𝜽
𝛽𝑝(𝛅𝐍 + 𝒔𝑅0)

𝑁𝜇
       

𝛽𝑖(𝛅𝐍 + 𝒔𝑅0)

𝐍𝜇
       𝟎

𝟎
𝟎
𝟎

𝒌
𝟎
𝟎

        
−𝛎 − 𝛉                       𝟎                    𝟎
       𝛎                −(𝐫 + 𝛌) − 𝜽          𝟎

                 𝟎                  𝒓                 −(µ + 𝐬) − 𝜽]
 
 
 
 
 
 
 

= 𝟎 

He’s coming :  

𝒅𝒆𝒕(𝑱 − 𝜽𝑰)  = − (µ + 𝜽) (𝜃4 + 𝜃3(𝐤 + 𝛎 + 𝑟 + 𝛌 + µ + 𝒔) − 𝜃2 (𝑘𝛎 + 𝐤𝐫 +

𝐤𝛌 + 𝐤µ + 𝐤𝐬 + 𝛎𝐫 + 𝛎𝛌 +  µ𝛎 + 𝐬𝛎 + µ𝒓 + 𝒔𝒓 + 𝛌µ + 𝒔𝛌 +
𝛽𝑝𝑘(𝛅𝐍+𝒔𝑅0)

𝑁𝜇
 ) +

 𝜃 (𝐤𝛎𝐫 + 𝐤𝛎𝛌 + 𝐤𝛎𝛍 + 𝐤𝛎𝐬 + 𝐤µ𝒔 + 𝒌µ𝛌 + 𝐤𝛌𝐬 +  µ𝒓𝛎 +  𝒔𝒓𝛎 +  𝛌µ𝛎 + 𝐬𝛌𝛎 +
𝛽𝑝𝑘𝑟(𝛅𝐍+𝒔𝑅0)

𝑁µ
+
𝛽𝑝𝑘𝛌(𝛅𝐍+𝒔𝑅0)

𝑁µ
+
𝛽𝑝𝑘(𝛅𝐍+𝒔𝑅0)

𝑁
+
𝛽𝑝𝑘𝑠(𝛅𝐍+𝒔𝑅0)

𝑁
) +   𝐤𝛎𝛍𝐫 +  𝒔𝒓𝒌𝛎 + 𝐤𝛌µ𝛎 +

𝐤𝛎𝐬𝛌 + 
𝛽𝑝𝑘𝑟(𝛅𝐍+𝒔𝑅0)

𝑁
+
𝛽𝑝𝑘𝑟𝑠(𝛅𝐍+𝒔𝑅0)

𝑁µ
+
𝛽𝑝𝑘𝛌(𝛅𝐍+𝒔𝑅0)

𝑁
+
𝛽𝑝𝑘𝑠𝛌(𝛅𝐍+𝒔𝑅0)

𝑁µ
+
𝛽𝑝𝑘𝑟𝛎(𝛅𝐍+𝒔𝑅0)

𝑁µ
)= 

0                                                                                                                                                 

Then, the first eigenvalue is θ = -µ and it remains to study the equation :   

𝜃4 + 𝜃3(𝐤 + 𝛎 + 𝑟 + 𝛌 + µ + 𝒔) 

−𝜃2 (𝑘𝛎 + 𝐤𝐫 + 𝐤𝛌 + 𝐤µ + 𝐤𝐬 + 𝛎𝐫 + 𝛎𝛌 +  µ𝛎 + 𝐬𝛎 + µ𝒓 + 𝒔𝒓 + 𝛌µ + 𝒔𝛌

+
𝛽𝑝𝑘(𝛅𝐍 + 𝒔𝑅0)

𝑁𝜇
 ) 

+ 𝜃 (𝐤𝛎𝐫 + 𝐤𝛎𝛌 + 𝐤𝛎𝛍+ 𝐤𝛎𝐬 + 𝐤µ𝒔 + 𝒌µ𝛌 + 𝐤𝛌𝐬 +  µ𝒓𝛎 +  𝒔𝒓𝛎 +  𝛌µ𝛎 + 𝐬𝛌𝛎

+
𝛽𝑝𝑘𝑟(𝛅𝐍 + 𝒔𝑅0)

𝑁µ
+
𝛽𝑝𝑘𝛌(𝛅𝐍 + 𝒔𝑅0)

𝑁µ
+
𝛽𝑝𝑘(𝛅𝐍 + 𝒔𝑅0)

𝑁

+
𝛽𝑝𝑘𝑠(𝛅𝐍 + 𝒔𝑅0)

𝑁
) 

+  𝐤𝛎𝛍𝐫 +  𝒔𝒓𝒌𝛎 + 𝐤𝛌µ𝛎 + 𝐤𝛎𝐬𝛌 + 
𝛽𝑝𝑘𝑟(𝛅𝐍 + 𝒔𝑅0)

𝑁
+
𝛽𝑝𝑘𝑟𝑠(𝛅𝐍 + 𝒔𝑅0)

𝑁µ

+
𝛽𝑝𝑘𝛌(𝛅𝐍 + 𝒔𝑅0)

𝑁
 

+
𝛽𝑝𝑘𝑠𝛌(𝛅𝐍 + 𝒔𝑅0)

𝑁µ
+
𝛽𝑝𝑘𝑟𝛎(𝛅𝐍 + 𝒔𝑅0)

𝑁µ
= 𝟎                                                                              
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We assume that the above equation is the characteristic equation of the submatrix  
𝐽1 : 

𝐽1 

=  

[
 
 
 
 −𝑘

𝛽𝑝(𝛅𝐍 + 𝒔𝑅0)

𝑁𝜇
  
𝛽𝑖(𝛅𝐍 + 𝒔𝑅0)

𝐍𝜇
 0

𝑘 −𝛎            0                 0
0
0

𝛎
0

−(𝐫 + 𝛌)          0
                   𝑟           −(µ + 𝐬)]

 
 
 
 

                                                               (15) 

We have the trace (𝐽1 ) = -[ 𝑘 +  𝜈 + 𝑟 +  𝜆 + µ + 𝐬] < 0, so : 

𝐝𝐞𝐭(𝐽1 ) =  𝐤𝛎(𝐫 + 𝛌)(µ + 𝐬) − 
𝛽𝑝𝑘(𝛅𝐍 + 𝒔𝑅0)(𝐫 + 𝛌)(µ + 𝐬)

𝑁µ

− 
𝛽𝑖𝐤𝛎(𝛅𝐍 + 𝒔𝑅0)(µ + 𝐬)

𝐍𝜇
       (𝟐𝟎) 

If det(J1) > 0, we get :   
𝛅𝐍+𝒔𝑅0
𝑁µ

(𝛽𝑝(𝐫+𝛌)+𝛽𝑖𝛎)

 𝛎(𝐫+𝛌)
< 𝟏. 

According to the Varga and Poincaré-Lyapunov theorem of linearization in 
(G.Sallet (2010)), ℛ0 is defined by the expression below : 

ℛ0 =
(𝛅𝐍 + 𝒔𝑅0)(𝛽𝑝(𝐫 + 𝛌) + 𝛽𝑖𝛎)

𝑁µ𝛎(𝐫 + 𝛌) 
.                                                                           (𝟏𝟕) 

5.7   Study of the stability of the equilibrium point E0 

1. Local stability  

According to the work of L.Chahrazed (2002), we define the local stability of  E0  : 

Definition .2. We say that E0 is locally asymptotically stable if and only if the trace of the 
Jacobian matrix in the neighbourhood of E0 is strictly negative and the determinant is strictly positive. 

In effect 
From equations (15) and (16) above, we deduce that : 

{

𝒕𝒓𝒂𝒄𝒆 (𝐽1 ) =  −[𝑘 +  𝜈 + 𝑟 +  𝜆 + µ + 𝐬] <  0 ;                                                

𝐝𝐞𝐭(𝐽1 ) =  𝐤𝛎(𝐫 + 𝛌)(µ + 𝐬) − 
𝛽𝑝𝑘(𝛅𝐍 + 𝒔𝑅0)(𝐫 + 𝛌)(µ + 𝐬)

𝑁µ
− 
𝛽𝑖𝐤𝛎(𝛅𝐍 + 𝒔𝑅0)(µ + 𝐬)

𝐍𝜇
> 𝟎.             (𝟏𝟖)

 

 

Thus, we see that if the conditions in (18) are met then the equilibrium point E0 
of the system (1) is 
unique and remains locally asymptotically stable.     

2. Global stability  

According to Lyapunov’s method in the works (Richard (1969)), (Moulay (1969)) 
and (Richard (2012)), we obtain the definitions below . 
We consider that U always designates a non-empty open of 𝑅𝑛  (n ∈  𝑁∗) containing 0 and 
I a non-empty interval of R, not bounded on the right.         
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Définition .8. Let f : I ×U → 𝑅𝑛 be a continuous application and a Cauchy-Lipschitz 
function, we associate the system : 𝑥 ̇  = f(x, t) (*), ∀t0 > 0, ∀t ≥ t0, we have x ∈ 𝑅𝑛 et x(t, t0, x0) 
denotes a solution of the system such that x(t0) = x0. 
An equilibrium point 𝑥𝑒 such that for all t, f(𝑥𝑒,  t) = 0 is (globally) attractive if the function              
φ(t, t0, x0) tends to 𝑥𝑒 when t tends to +∞.                                                                                                                                                                        

Définition .9. We say that 𝑥𝑒 is an asymptotically stable equilibrium point, if it is a stable 
equilibrium point and if the domain of attraction of x0 is a neighbourhood of x0. 

Définition .10. Let  𝑥𝑒 be a non-empty compact of U, we consider the system (*). 
We say that  𝑥𝑒 is a globally asymptotically stable equilibrium point for the system (*) if : 

1.  𝑥𝑒 is stable on the system (*) 

2.  for all t0∈ I, and x0∈U, x(t, t0, x0) is defined for all t ≥ t0 and 
 𝑙𝑖𝑚
𝑡→+∞

𝑑(𝑥(𝑡, 𝑡0, 𝑥0, 𝑥𝑒)) = 0. 

According to the definitions (8), (9) and (10) concerning the global stability of the 
point E0, we proceed to the study of global stability : 

Lemme 1. The number of susceptibles S in the model (1) verifies the relation (19) below: 

lim
𝑡→+∞

sup 𝑆(𝑡) ≤
𝛿𝑁 +   𝑠𝑅0 

𝜇
.                                                            (𝟏𝟗) 

Proof : 

According to the model (1), we have the equation 𝑆̇ =  𝛿𝑁 + 𝑠𝑅 −  µ𝑆 −
𝛽𝒑𝑺𝑷

𝑵
 −

𝛽𝒊𝑺𝑰

𝑵
, 

avec S(0) = S0 and R(0) = R0. And it is obvious that :  

𝑆̇ <  𝛿𝑁 + 𝑠𝑅 −  µ𝑆(𝑡). 

For t > 0, in the absence of the infection I = 0 et R0 > 0, we obtain : 

𝑆̇ <  𝛿𝑁 + 𝑠𝑅0  −  µ𝑆(𝑡). 

Assume that : 
                             𝑍̇ = 𝛿𝑁 + 𝑠𝑅0  −
 µ𝑆(𝑡).                                                                                    (20) 

With the initial condition Z(0) = Z0 = S0. 

And we have Z(t), S(t)∈ 𝐶1[0, +∞], Z(0) = Z0 = S0 > 0 et t∈[0,+∞[. 

Solving the equation (20) which is an ordinary linear differential equation of the 
first order in time t > 0 with Z(0) =Z0, we obtain : 

𝐙(𝐭) = 𝑍0𝒆
−µ𝐭 +

𝛅𝐍 + 𝑠𝑅0
µ

(1 − 𝒆−µ𝐭). 

Determining the limit of Z(t) when t goes to infinity, we obtain : 

𝐥𝐢𝐦
𝒕→+∞

𝒁(𝒕) =
𝛅𝐍 + 𝑠𝑅0

µ
. 

So  
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lim
𝑡→+∞

sup 𝑆(𝑡) ≤ 𝐥𝐢𝐦
𝒕→+∞

𝒁(𝒕) =
𝛅𝐍+ 𝑠𝑅0

µ
. 

We now have the following theorem : 

Theorem .2. If  
(𝛅𝐍+𝒔𝑅0)(𝛽𝑝(𝐫+𝛌)+𝛽𝑖𝛎)

𝑁µ𝛎(𝐫+𝛌) 
< 𝟏  then the equilibrium point E0 of the system 

(1) is globally asymptotically stable. 

Proof : 

Using (19) for η > 0 then there exists T1 > 0 such that  𝑆(𝑡) ≤
𝛅𝐍+𝑠𝑅0

µ
+ 𝜂,  for t > T1. 

According to the system (1), we obtain : 

𝐸̇(𝑡) ≤
𝛽𝒑 

𝑵
(
𝛅𝐍 + 𝑠𝑅0

µ
+ 𝜂)𝑷(𝒕)  +

𝛽𝒊 

𝑵
(
𝛅𝐍 + 𝑠𝑅0

µ
+ 𝜂) 𝑰(𝒕) −  𝑘𝐸(𝑡) ; 

𝑃̇(𝑡) ≤ 𝑘𝐸(𝑡) −  𝜈𝑃(𝑡) ;                                                                                     

𝐼̇(𝑡)  ≤ 𝜈𝑃(𝑡) −  (𝐫 + 𝛌)𝐼(𝑡) ;                                                                              

𝑅̇(𝑡)  ≤ 𝑅0 + 𝑟𝐼(𝑡) − (𝜇 + 𝑠)𝑅(𝑡).                                                                  

 

Then for t > T1, we pose : 

𝐽(̇𝑡) = 𝛽𝒑 (
𝛅

µ
+ 
𝑠𝑅0 + µ𝜂

µ𝐍
 )𝑲(𝒕)  + 𝛽𝒊 (

𝛅

µ
+ 
𝑠𝑅0 + µ𝜂

µ𝐍
) 𝑳(𝒕) −  𝑘𝐽(𝑡) ; 

𝐾̇(𝑡) = 𝑘𝐽(𝑡) −  𝜈𝐾(𝑡) ;                                                             

𝐿̇(𝑡) = 𝜈𝐾(𝑡) − (𝐫 + 𝛌)𝐿(𝑡).                                                   

𝑀̇(𝑡) = 𝑀0 + 𝑟𝐿(𝑡) − (𝜇 + 𝑠)𝑀(𝑡).                                       

We obtain the matrix D defined in the following way : 

𝐷

=          

[
 
 
 
 −𝑘 𝛽𝒑 (

𝛅

µ
+ 
𝑠𝑅0 + µ𝜂

µ𝐍
 ) 𝛽𝒊 (

𝛅

µ
+ 
𝑠𝑅0 + µ𝜂

µ𝐍
)       0

𝑘 −𝜈               0                      0
0
0

𝜈
0

               − 
(𝐫 + 𝛌)
       𝑟

    0
     −(𝜇 + 𝑠)]

 
 
 
 

                                 (21) 

We have the trace(D) = −(𝑘 +  𝜈 + 𝑟 +  𝜆 + µ + 𝐬). 

And for the determinant, we have : 

 𝑑𝑒𝑡(𝐷) =  𝐤𝛎(𝐫 + 𝛌)(µ + 𝐬) − 𝛽𝑝𝑘(𝐫 + 𝛌)(µ + 𝐬) (
𝛅

µ
+ 

𝑠𝑅0+µ𝜂

µ𝐍
 ) −  𝛽𝑖𝐤𝛎(µ +

𝐬) (
𝛅

µ
+ 

𝑠𝑅0+µ𝜂

µ𝐍
). 

If  
(𝛅𝐍+𝒔𝑅0)(𝛽𝑝(𝐫+𝛌)+𝛽𝑖𝛎)

𝑁µ𝛎(𝐫+𝛌) 
< 𝟏    and η <<< 0, then det(D) > 0 implies : 
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 𝐤𝛎(𝐫 + 𝛌)(µ + 𝐬) − 𝛽𝑝𝑘(𝐫 + 𝛌)(µ + 𝐬) (
𝛅

µ
+ 

𝑠𝑅0+µ𝜂

µ𝐍
 ) −  𝛽𝑖𝐤𝛎(µ + 𝐬) (

𝛅

µ
+

 
𝑠𝑅0+µ𝜂

µ𝐍
) > 𝟎. 

It comes :
(𝛅𝐍+𝒔𝑅0)(𝛽𝑝(𝐫+𝛌)+𝛽𝑖𝛎)

𝑁µ𝛎(𝐫+𝛌) 
< 𝟏. 

So  

lim
𝑡→+∞

 J(t)  =  0, in comparison with the system (1) lim
𝑡→+∞

 E(t)  =  0 ; 

lim
𝑡→+∞

 K(t)  =  0, in comparison with the system (1) lim
𝑡→+∞

 P(t)  =  0 ; 

lim
𝑡→+∞

 L(t)  =  0, in comparison with the system (1) lim
𝑡→+∞

 I(t) =  0 ; 

lim
𝑡→+∞

 M(t)  =  𝑀0, in comparison with the system (1) lim
𝑡→+∞

 R(t)  =  𝑅0. 

As 𝑆(𝑡) ≤
𝛅𝐍+𝑠𝑅0

µ
+ 𝜂, for t > T1.  

And if  lim
𝑡→+∞

 S(t)  =  
𝛅𝐍+𝑠𝑅0

µ
, then lim

𝑡→+∞
 P(t)  =  0 , lim

𝑡→+∞
 I(t)  =  0 and 

lim
𝑡→+∞

 R(t)  = 𝑅0, for all θ > 0, 𝜌 > 0 and 𝑅0 > 0, there exists T2 > 0 such that : P (t) < θ, 

I(t) < 𝜌 and R(t) < 𝑅0, for t > T2. 

Let 𝑇3,  = max(𝑇1 , 𝑇2), for t > 𝑇3, we get: 

𝑷 (𝒕) < 𝜽, 𝑰(𝒕) <  𝜌,   𝑹(𝒕) <  𝑅0 𝒂𝒏𝒅 𝑺(𝒕)

≤
𝜹𝑵+ 𝒔𝑅0

µ
+ 𝜂                                            (22)  

It comes : 𝑆̇ >  𝛿𝑁 + 𝒔𝑅0  −  µ𝑆 −
𝛽𝒑 

𝑵
(
𝛅𝐍+𝒔𝑅0

µ
+ 𝜂)𝜽 −

𝛽𝒊 

𝑵
(
𝛅𝐍+𝒔𝑅0

µ
+ 𝜂)𝝆. 

So     𝑆̇ +  µ𝑆 >  𝛿𝑁 + 𝒔𝑅0 −
𝛽𝒑 

𝑵
(
𝛅𝐍+𝒔𝑅0

µ
+ 𝜂)𝜽 −

𝛽𝒊 

𝑵
(
𝛅𝐍+𝒔𝑅0

µ
+ 𝜂)𝝆. 

 

We consider that: 

𝑉̇(𝑡) +  𝜇𝑉(𝑡) =  𝛿𝑁 + 𝒔𝑅0 −
𝛽𝒑 

𝑵
(
𝛅𝐍+𝒔𝑅0

µ
+ 𝜂)𝜽 −

𝛽𝒊 

𝑵
(
𝛅𝐍+𝒔𝑅0

µ
+ 𝜂)𝝆 ;             

𝑉(𝑇3) = (𝑉)0.                                                                                                                 

Solving this first-order linear differential equation, we get  : 

𝑽(𝒕)

= (𝑽)𝟎𝒆
−𝝁(𝒕−𝑻𝟑)                                                                                                                                            

+
𝟏

𝝁
(𝛅𝐍 + 𝒔𝑅0 −

𝛽𝒑 

𝑵
(
𝛅𝐍 + 𝒔𝑅0

µ
+ 𝜂) 𝜽 −

𝛽𝒊 

𝑵
(
𝛅𝐍 + 𝒔𝑅0

µ
+ 𝜂)𝝆 ) (𝟏 − 𝒆−𝝁(𝒕−𝑻𝟑)),  

𝒇𝒐𝒓 𝒕 > 𝑻𝟑.                                                                                                                             

Let’s put  𝜂𝟏 =
𝛽𝒑 

𝑵
(
𝛅𝐍+𝒔𝑅0

µ
+ 𝜂)𝜽 +

𝛽𝒊 

𝑵
(
𝛅𝐍+𝒔𝑅0

µ
+ 𝜂)𝝆 . 

It comes :  𝑽(𝒕) = (𝑽)𝟎𝒆
−𝝁(𝒕−𝑻𝟑) +

𝛅𝐍+𝒔𝑅0−𝜂𝟏

𝝁
(𝟏 − 𝒆−𝝁(𝒕−𝑻𝟑)). 
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So     lim
𝑡→+∞

 V(t)  =  
𝛅𝐍+𝒔𝑅0−𝜂𝟏

µ
 . 

Since  S(t),V (t)∈ 𝐶1([0, +∞]) and S(𝑻𝟑) = V (𝑻𝟑), we have: S(t) ≥ V (t), for t > 𝑻𝟑. 

Means that                             
lim
𝑡→+∞

𝑖𝑛𝑓 𝑆(𝑡) ≥
𝛅𝐍+𝒔𝑅0−𝜂𝟏

µ
.                                                                  (𝟐𝟑) 

From (22) and (23) if we choose  𝜂𝟏, θ and 𝝆 very small and t> 𝑻𝟒 > 𝑻𝟑, then we 
get : 

𝛅𝐍+𝒔𝑅0

µ
−

𝜂𝟏

µ
< 𝑆(𝑡) <  

𝛅𝐍+𝒔𝑅0

µ
+
𝜂𝟏

µ
.    

Moving to the limit  :         𝐥𝐢𝐦
𝒕→+∞

𝑺(𝒕) =
𝛅𝐍+𝒔𝑅0

µ
. 

Hence the equilibrium point E0 of the system (1) is globally asymptotically stable. 

5.8  Local stability of the equilibrium 𝑬∗ 

By studying the local stability of 𝑬∗, we obtain the following theorem : 

Theorem .3. If ℛ0 > 1, then the endemic equilibrium 𝐸∗ of the system (1) is locally 
asymptotically stable. 
Proof : 

According to the proposition in the works of L.Chahrazed (2002) and CHABOUR 
(2000), we characterize the local stability of 𝐸∗, as follows : 

Proposition 2. The epidemic is locally asymptotically stable if and only if all the eigenvalues 
of the Jacobian matrix J have a negative real part. 

According to the proposition (2), we define J as follows : 

𝐽(𝑆∗, 𝐸∗, 𝑃∗, 𝐼∗, 𝑅∗) =   

[
 
 
 
 
 
 
 − µ −

𝛽𝒑𝑷
∗

𝑵
 −
𝛽𝒊𝑰

∗

𝑵
0 −

𝛽𝒑𝑺
∗

𝑵
−
𝛽𝒊𝑺

∗

𝑵
      𝑠

𝛽𝒑𝑷
∗

𝑵
+
𝛽𝒊𝑰

∗

𝑵
−𝑘

𝛽𝒑𝑺
∗

𝑵

𝛽𝒊𝑺
∗

𝑵
             0

0
0
0

𝑘
0
0

−𝜈           0             0
    𝜈 −(𝐫 + 𝛌)          0

           0      𝑟          −(µ + 𝐬)]
 
 
 
 
 
 
 

 

The eigenvalues can be determined by solving the equation det(J - θI) : 

𝑑𝑒𝑡(𝐽 −  𝜃𝐼)  

=

[
 
 
 
 
 
 
 − µ −

𝛽𝒑𝑷
∗

𝑵
 −
𝛽𝒊𝑰

∗

𝑵
− 𝜽 0 −

𝛽𝒑𝑺
∗

𝑵
−
𝛽𝒊𝑺

∗

𝑵
             𝑠

𝛽𝒑𝑷
∗

𝑵
+
𝛽𝒊𝑰

∗

𝑵
−𝑘 − 𝜃

𝛽𝒑𝑺
∗

𝑵

𝛽𝒊𝑺
∗

𝑵
                0

0
0
0

𝑘
0
0

−𝜈 − 𝜃      0               0
  𝜈 −(𝐫 + 𝛌) − 𝜽     0

           0      𝑟          −(µ + 𝐬) − 𝜽]
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So the characteristic function is written with the coefficients defined below :: 

𝜽𝟓 + 𝑨𝜽𝟒 +𝑩𝜽𝟑 + 𝑪𝜽𝟐 +𝑫𝜽 + 𝑬 = 𝟎. 

The coefficients are : 

A =2µ + 𝑘 +  𝜈 + 𝑟 +  𝜆 + 𝐬 + 
1

𝑁
(𝛽𝒊𝑰

∗ + 𝛽𝒑𝑷
∗)  ; 

B = (𝑘 +  𝜈 + 𝑟 +  𝜆 + µ + 𝐬 )(µ + 
1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗) ) + (𝑟 +  𝜆 + µ + 𝐬 ) (𝑘 +

 𝜈 )  

    + (µ + s ) (𝑟 +  𝜆 ) + k(𝜈 −
𝛽𝒑𝑺

∗

𝑁
) ; 

C =  ((𝑟 +  𝜆 + µ + 𝐬 )(𝑘 +  𝜈 ) +  (µ + s )(𝑟 +  𝜆 ) +  𝑘 (𝜈 −
𝛽𝒑𝑺

∗

𝑁
) ) (µ +

 
1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗) )  

      +   (µ + s ) (𝑘 +  𝜈 )(𝑟 +  𝜆 ) + k(
𝛽𝒑𝑺

∗

𝑁
) ( 

1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗)) + (𝑟 +  𝜆 + µ +

𝐬 ) (𝜈 −
𝛽𝒑𝑺

∗

𝑁
) 

      −
𝛽𝒊𝑺

∗

𝑁
𝒌𝝂 ; 

D = (𝒌𝝂(𝑟 +  𝜆 + µ + 𝐬 ) + (µ + s )(𝑘 +  𝜈 )(𝑟 +  𝜆 ) −
𝛽𝒑𝑺

∗

𝑁
(𝑟 +  𝜆 + µ +

𝐬 ) −
𝛽𝒊𝑺

∗

𝑁
𝒌𝝂) (µ +          

1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗) ) + 𝒌𝝂(µ + s ) (𝑟 +  𝜆 −

𝛽𝒊𝑺
∗

𝑁
 ) +

𝑘 ( 
1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗)) ((𝑟 +  𝜆 + µ +          𝐬 ) (

𝛽𝒑𝑺
∗

𝑁
) +

𝛽𝒊𝑺
∗

𝑁
𝝂) ; 

𝑬 = (𝒌𝝂(µ + s ) (𝑟 +  𝜆 −
𝛽𝒊𝑺

∗

𝑁
 )) (µ + 

1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗) ) 

       +𝒌𝝂(µ + s ) (
1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗))((𝑟 +  𝜆 ) (

𝛽𝒑𝑺
∗

𝑁
) +

𝛽𝒊𝑺
∗

𝑁
𝝂)  

       −𝒌𝝂𝒓𝒔( 
1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗)). 

We have A > 0 and  B, C, D,E > 0 if 𝜈 −
𝛽𝒑𝑺

∗

𝑁
> 𝟎 . 

Using the Routh-Hurwitz criterion in the work of (J.M.M.ONDO (2012)), we have 
: AB - C > 0. 

We calculate AB - C, we get : 
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              𝐴𝐵 −  𝐶

= (𝑘 +  𝜈 + 𝑟 +  𝜆 + µ + 𝐬) ((µ +  
1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗) )

2

+ (𝑘 +  𝜈 )(𝑟 +  𝜆 + µ + 𝐬)) +
𝛽𝒊𝑺

∗

𝑁
𝒌𝝂

+ (µ + s )(𝑟 +  𝜆 )(𝑟 +  𝜆 + µ + 𝐬) + k(𝑘 +  𝜈 ) (𝜈 −
𝛽𝒑𝑺

∗

𝑁
)

− (
𝛽𝒑𝑺

∗

𝑁
)(

1

𝑁
( 𝛽𝒑𝑷

∗ + 𝛽𝒊𝑰
∗)). 

Therefore 𝑬∗ is locally asymptotically stable. 

 

Conclusion 

In spite of the limits induced by this model, it has a lot of originality to take into 
account if we want to predict and study the new behaviours of emerging infectious diseases 
within a population. Indeed, this model does not give a direct solution to an epidemic, but 
thanks to the multitude of parameters (study of ℛ0, stability, equilibrium point) and the 
simulation, it offers us the means to better understand the dynamics of the propagation of 
infectious diseases caused by global warming. The proposed model helps us to make more 
radical decisions to better prepare for the development of measures to maintain public 
health.  
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