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Abstract

In epidemiology, the search for new behavior of infectious agents, processes and
mechanisms of diffusion of infection of emerging infectious diseases caused by global
warming have already led to tangible results. This paper proposes a dynamic endemic model
Susceptible, Exposed, Precontaged, Infected, Retired, Susceptible (SEPIRS). This model is
specialized in epidemics that persist for a long time and in cases where the infection spreads
directly: first between pre-contagious individuals (asymptomatic) and susceptible
individuals, second between infectious individuals (symptomatic) and susceptible
individuals. This model characterises the individual recovering from infection to develop a
temporary immunity and then become susceptible again after some time.
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Introduction

In epidemiology, making a model sufficiently close to reality is a crucial challenge
because each infectious disease has its own behaviour. There are infectious diseases that are
resistant to vaccines and that generate temporary immunity. This is known as the
bifurcation of disease (Greenhalgh (1997)). And there are infectious diseases that have a
natural behaviour that the infectious individual, once cured. He does not acquire a
permanent immunity, but he becomes susceptible again after some time (J.M.M.ONDO
(2012)). In any case, this behaviour probably generates a second or even a third wave of the
same epidemic in the same population with different periods. This requires taking into
account the existence of individuals who were immune before the epidemic. For before a
second wave of the epidemic begins, there are probably groups of temporarily immune
individuals in the population. (Greenhalgh (1997)) attempted to solve this problem by
working on Hopf bifurcations for the Susceptible, Exposed, Infected, Retired, Susceptible
(SEIRS) model, under the hypothesis that some of the susceptible individuals are
vaccinated and that there is the acquisition of a temporary immunity. The model is
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improved by (Melesse and Gumel (2010)) by studying the asymptotic behaviour of such a
model with multiple infection steps. They obtained a famous Susceptible, Exposed,
Infected, Retired, Susceptible (SEIRS) model of today. But nowadays, this model has a
weakness, because today, there is an infectious disease that spreads with a very rapid speed
and it is transmitted even between individuals who do not yet show symptoms (INSPQ
(2021)), (WELKER (2020)). This is what (OMS (2019)) and (Hu et al. (2020)) called a new
strain of coronavirus or COVID-19. This is incompatible for the SEIRS model.

Moreover, the search for new behaviour of infectious agents, processes and
mechanisms of diffusion of infection of emerging infectious diseases caused by global
warming has already led to tangible results in our work (Masonova et al. (2021a)) and
(Masonova et al. (2021b)). In the present work, we propose a model adapted to this new
behaviour of infectious agents to remedy the weakness of existing models in the literature.
In the following, our work is divided into ten sections. Section 2 presents the dynamic
process of disease infection. We present the different Definitions of hypotheses in Section
3. The objective of proposed model of epidemic is presented in section 4. Section 5 propose
the endemic model or SEPIRS. We end with a short conclusion in section 6.

New dynamic process of infection of emerging and re-emerging infectious diseases

According to our work of Masonova et al. (2021a) and Masonova et al. (202 1b) that
we accept that an individual is affected by an infectious disease when he or she comes into
contact with
a pathogen, which may be of various kinds (an infected individual, a mosquito, a well, etc.).
We note that the modification and genetic change of pathogen micro-organisms caused by
global warming will lead to the advancement or acceleration of the contagiousness period
which we call "early or premature contagion or precontagion" (see figure (1)). This means
that the infectious disease is spread not only by the sick individual (who shows symptoms)
but also by the healthy carrier individual. This will cause the epidemic to spread very
rapidly. We consider here that the change in the transfer of infection brought about by the
new behaviour of the pathogens does not change the total duration of the contraction of
the disease on the individual. But it does increase the time of the contagious period and
decrease the latent period.

The character precontagious of an individual is acquired only after a period of
latency after infection. And the infected individual also remains contagious for some time
: he is then either ready to contract the disease again, or resistant to a new infection, or

dead.

1 Mechanism of disease progression

According to our work of Masonova et al. (2021a) and Masonova et al. (2021b) that
the mechanism of evolution of an epidemic is presented in the following stages :

— Global warming has increased the temperature of the earth’s surface.

— The increase in temperature has impacted the environment of living beings,
including microorganisms.
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— In the micro-organisms, those that are not killed by the increase in temperature,
have managed to adapt, to mutate and they have sought the new favorable
environment to live in (in the human organism).

—  When micro-organisms arrive in human organisms, the mutants are able to adapt
and multiply very quickly.

— After the latent phase, without having yet to cause the prodrome in the host
organism, they can already contaminate other organisms from saliva, sexual
intercourse, sneezing, blood, a few ordinary coughs, etc. i.e. a healthy carrier can
contaminate the population if he is already infected.

— The infected individual remains contagious until the onset of symptoms of the
disease and has continued to be contagious until some time after recovery or death.

In order to provide our solution to the study of the modelling of this phenomenon,
we make the following definitions of assumptions that complement the definition of the
susceptible, exposed, infected compartments and the latency period.

3 Definitions of the study’s assumptions

Definition .1. An individual who has been infected with the disease pathogen and is capable

of transmitting it, but has no symptoms, is called a precontaminated or precontagious
individual

Definition .2. Précontaged individuals are assigned to this compartment with the rate of
precontagion called the precontagion rate. Precontagious individuals are assigned to this compartment
with the rate k called precontagiousness rate.

The letter P will be used to refer to individuals who are infected and contagious,
but do not yet show symptoms of disease.

Definition .3. The period of precontagiousness is the time during which an infected
person has no symptoms but can transmit the disease to another.

Definition .4. The infected compartment represents those who are not only already
infected and have shown symptoms of the disease, but also capable of transmitting the disease back
into the population.

Definition .5. The period of contagiousness is a distinct phase of time when the sick
individual (person who has the symptoms of the disease and whose health is impaired) transmits a
disease to the other individual.
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The figure (1) represents schematically the different phases of the disease.

Start of Start of the Start of the
the infection  Precontagion disease Recovery

Périod symptomatic:

latency | >l ol
Of period of period of contagiousness
Period precontagiousness
v % v L 4
Time ( day )
Susceptible Exposedl  Precontaged Infected Reétired

FIG. 1: Representation of the contagion process «<SEPIR»

Objective of proposed model of epidemic spread

In this section, we focus on modelling the new phenomenon of the spread of
infectious diseases caused by global warming in a population. On the one hand, we
highlight the new dynamic process of the infection of emerging infectious diseases, on the
other hand, we present the different hypotheses of the infectious disease behaviours. The
present study consists in proposing a propagation model able to understand the different
behaviours of the infectious disease and the new mechanism of the rapidity of the infection
diffusion. The model assumes that the population is constant and homogeneous (no age
structure, no spatial or social structure).

Our objective is to develop a new compartmental model by integrating the above
assumption of new dynamic infection processes into the SEIRS compartmental model in
the literature. Indeed, this integration effectively contributes to the modelling and
simulation of any form of emerging diseases caused by global warming. In this work,
epidemic modelling only considers cases where infection spreads directly : first, between
precontagious (precontaminated) and susceptible individuals ; second, between infectious
(infected) and susceptible individuals.

The endemic model of SEPIRS

In this type of model, we consider that the disease persists and continues to spread
during a time interval
[t, t + At] (equivalent to a month or a quarter or a semester or a year). This leads us to
consider, over time, the birth rate of the population, the natural mortality of the population
and the loss of infectivity of the disease in the population. And we consider that emigration
is balanced to immigration of inhabitants.
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1 Definition of the assumptions of the endemic model of SEPIRS
In order to design our SEPIRS model, we make the following assumptions :
e Al : The size of the population is equal to N (assumed fixed) ;
e A2:The time variable tis of discrete type, such that t €T or T is the total duration.
e A3 : The period of time At = dt represents hours or days or weeks.

e A4 : At each time t, the population N is subdivided into four compartments : S(t)
: set of susceptible individuals, E(t) : set of exposed individuals, P(t) : set of
precontaged individuals, I(t) : set of infected individuals and R(t) : set of Recovered
or Withdrawn individuals with S(0) = So >0, P (0) = P, > 0 and/or I(0) = I, > 0 and

Ro > 0 in the case of a second or even third wave of the same epidemic ;

e A5 : We assume that each susceptible individual in a At period is exposed,
precontaged and then infected and the cured individual is temporarily immune to
the infection, and becomes susceptible again after some time ;

e A6 : The transmission of the infection is done through a direct contact between :
firstly, susceptible S and one or more precontaged P with a factor 8, proportionality
(also called rate of precontagion or rate of transmission or rate of transmission from
the susceptible to the infected), secondly, susceptible S and one or more infected I
with a factor B of proportionality (also called rate of infection) and it is admitted
that a factor f is the rate of total transmission or of exposure such as

B =B+ B

e A7 : During the time interval [t, t + At], the population under study is assumed to
increase (there are new births) with the birth rate . It also suffers the natural death
on the susceptible population and temporarily recovery with the mortality rate u
and it suffers in addition the loss of infectivity of the disease only for the sick
(infected) individuals with the mortality rate A. Here, in relation to the
aggressiveness of the micro-organism, it is difficult to determine the cause of death
of each individual in the Exposed and Precontaged compartments if it is natural or

related to this disease. Therefore, we consider here the deaths in these two
compartments is already counted and ejected in the rate A ;

e A8 : Compartment D is used to store individuals who have died from the disease
with a rate of A in the time interval [¢, t + At] ;

e A9 : We consider that a constant average number of contacts cannot be applied to
all diseases : we can generalise by putting the proportionality coefficients fp and fi

which depend on N.
2 Schematic of the endemic SEPIRS model

We admit that an infected individual and a precontaminated individual meet on
average B(S/N) individuals susceptible to be exposed per unit of time, with § = 8, + 3.

We note : f> 0 : the rate of exposure (or of transmission from the susceptible to
the exposed), k> O : the rate of precontagiousness (or of transmission from the exposed to
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the precontaged), v > 0 : the rate of contagiousness (or of transmission from the
precontaged to the infected), r > O : the rate of retired or recovery or temporary immunity
(or transmission from the infected to the Retired), s > O : the rate of susceptibility (or
transmission from the Retired to the susceptible), A > O : the rate of infected to die, u > 0 :
the rate of natural mortality, § > O : the rate of birth.

The endemic model is schematized as in the figure (2) below :

k v r
ot o . ) (0
n

A
Died

FIG. 2: Drawing of the SEPIRS endemic model

3. Differential equation representation of the endemic SEPIRS model

According to the hypothesis (A7) in section (5) above, we consider that during the
time interval dt, the Susceptible compartment has increased in the number 6N of newborns
and in the number sR of individuals losing their immunity. But at the same time, it loses
the number %(,BPP + ﬁil) of individuals exposed by the disease and the number uS of
individuals who died naturally. According to the hypothesis (A6), we consider the new cases

reached by the infection during the time interval dt which are equal to %SI . And the new

cases reached by the precontagion during the interval of time dt which are equal to %SP‘.
We obtain the new cases exposed to the disease during the time interval dt which will be
equal to %SP + %SI = %(ﬁpP + ﬁil). According to hypothesis (A5), we consider that

during the time interval dt the compartment precontaged by the disease has increased in
number kE individuals, and, at the same time, it loses the number VP of sick or infected
individuals. According to hypothesis (A5) and (A7), we consider that during the time
interval dt the compartment Infected has increased by vP of precontaged individuals, and,
at the same time, it loses the number 7l of the epidemic deaths and the number rI of the
cured individuals. According to the hypothesis (A4), (A5) and (A7), we consider that during
the time interval dt the compartment of Retired benefits the number RO of the temporary
immunized individuals and it increased the number 7l of the infected individuals, and, at
the same time, it loses the number sR of the individuals lost their immunity and the number
r] of the naturally dead individuals. And it represents in the form of the following system
of differential equations (1):
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d
( % = 6N + sR(t) — pS(t) — %(ﬁpP(t) + ﬁil(t)) ;
dE(t) S
—— =5 (BP@®) + Bl (®) — KE(®);
ar®) _ kE(t) — vP(t);
) dl(?)t
— = vP(t) = (r + DI®);
dl;(tt) =Ry +7I(t) — (u+ s)R() ;
dD(t)
ST A (t).

We assume the initial conditions : S(O) = SO; E(0) = EO; P (0) = PO; I(0) = I0; R(0) =
RO and the
biological domain : Q ={(S,E,P,I,R),S >0, P> 0,I > 0,R > 0} which is positively
invariant for the system (a set G is said to be positively invariant if Vxo €G the trajectory
passing through xo is contained in G after X : if x is the solution of the system X' = F(X) (with F
of classC *°) verifying x(0) = xo, then Vt > 0, x(t)€G ). By studying the system (1), we obtain the
following theorem :

Theorem .1. Let VN, 6, 1, A, Bp, Bi, k, v, & 1, s € Rand Ry = O, the absence of infection
or 1=0, the endemic model SEPI=SEPIS=SEPIR=SEPIRS.

Proof :
It is obvious that if we put [=0 and R = 0 in the four model, they become identical.
5.4 Simulation of the SEPIRS model

The different curves below (obtained with Scilab) already give us an idea of the
evolution of the epidemic. For the simulation, we consider here to have an individual
precontaged at time t = 0 with N=1000, § =0,3; fp=0,2; i=0,1;k=0,4;v=0,2;u =
0,2;A=0,3;r=0,5; R0 =0 ets=0,3. We consider a period of time t which depends on
the unit of the transmission rates, and it is equivalent to a day or a week or a month or a
quarter or a semester (with unit time t day or week or month or quarter or semester). By
running the simulation, we obtain the following curves :

(1
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Interpretation :

From the figure (3), we note that even with low pre-contagion and infection rates,
the epidemic evolves with phenomenal and very rapid speed. Even with average birth rates
(6 =0,3) added to the Susceptible compartment, any Susceptible population is already
exposed after only 2° period of time t.
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Interpretation :

From figure (4), after the phenomenal evolution of the epidemic up to the 1 time
period t, the curve of the Exposé decreases, and stabilises and becomes endemic after the
7¢ time period t of the epidemic.
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FIG. 5: Curves of I(t) coloured in red and P(t) in blue

Interpretation :

From the figure (5), it appears that even after the 7° period of time t, the curves of
the Precontaged and the Infected still believe each other and this is a sign of a pandemic.
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FIG. 6: Curves of D(t) coloured in red and R(t) in blue

Interpretation :

From the figure (6), it appears that after the 7° period of time t, the curves of R(t)
and D(t) are still increasing and we have recorded almost 150 individuals are recovered and
temporarily immune from this disease, and almost 280 deaths related to this disease in 7¢

period of time t only.

5.5 Study of the equilibrium point of the SEPIRS endemic model
Lyapunov in (J.M.M.ONDO (2012)), defines the equilibrium point as follows :
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Définition .1. Consider U; a non empty open of R" containing 0, and I a non empty
interval of R, not bounded on the right. Let the two equations below (2) and (3) :

x = f(x) (2)

x = f(tx) 3)

where the functions f : U—=R" for the system (2) and f : I x U— R" for the system (3) sare
assumed to be continuous.

A point "a" is an equilibrium point or equilibrium state or singular point of the system (2) (resp. (3)),

if f(a) = O (resp. if, for all t €I, f(t,a) =0).

From the definition (1) of the equilibrium point above, we obtain the following
proposition :

Proposition 1. Let N>0. Then, the system (1), with the condition S(0) = So, E(0) = Eo, P
(0) = Py, 1(0) = I, RO) = ROand Q = {(S,E,P,R), S >0,P >0, > 0,R > 0}, admits
a unique solution (S,E,P,LLR) defined on [0, +ool.
Proof :

Equilibrium points are calculated in the absence of infection and/or precontagion.
The equilibrium point of the model (1) satisfies :

s
SN + sR — uS—ﬁ(,BpP+,8iI) =0

S

N(ﬁpP+ﬂiI)— kE =0

kE — vP =0 (4)
vVP—(r+0)I=0
\ Ry +7r[—(u+s)R=0

In the absence of the infection 1=0 and the pre-contagion P=0, we obtain the
following proposition :

Corollary .1. Let N>0, in the absence of infection I=0 and precontagion P=0, then :

— At t=0 and R(0) = RO, system (1) admits the equilibrium point : E, =
SN+ SR, T
( P )0) 0; O:RO) )

T
— Butif at t=0 and RO = O, then the equilibrium point becomes Ey = (%V, 0,0, 0,0) .

Proof :

By replacing P=0 and I=0 in the equations of the system (4), we obtain the

A A A A oA

equilibrium point E, = ( S,E,P,I,R) as follows : E, =
SN+ SR T
(TO, 0,0,0, RO) considering that in t=0, R(0) =R,.

T
But if at t=0 and RO = O, then the equilibrium point becomes E, = (%V, 0,0, 0,0) .
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In the presence of the precontagion P#0 and in the absence of the infection I = 0,
we obtain the
following corollary :

Corollary .2. Let N>0, in the absence of the infection I=0 and in the presence of the
precontagion P#0, then :

—  the system (1) admits the following equilibrium point

E; _ (ﬂ, 8NBp+ sBpRo— UVN ’ 8NBp+ sBpRo— WWN y R0>T ;
Bp kﬁp Vﬁp
—  Moreover, for all £>0 we have SNy, + sppRo > uvN.
Proof :
By replacing 1=0 the system (4) becomes :
SP
SN + sR — us—ﬁ"N =0
SP

F "N — kE =0 (5)
kE — vP =0

The third equation of the system (5), implies : E* =%.

Replacing E* in the second equation of (5) with P#0, we obtain : §* =;—N.

p
o) —
Replacing S* in the first equation of (5), we obtain : P* = Nﬁp+sf;R0 N with
P

[=0 implies that R(t) still equals R,.
Replacing P* in E*, we then have the equilibrium point E; = (S*, E*, P*,R") as
follows :
vN 68NB, + sppRy — wvN
- (ﬁ_p' kB, '

ONB, + sf,Ry — WN T
bt Pof” WR Ro> )
v,Bp

We note that $> S* : SN- +;45R0
VN
o ™

5 _
From (7), we deduce that : E* = NBP"'ngRo WvN
p

0. (8)

And P* = 6Nﬁp+ SﬁpRo— WYN

vPBp
0. )
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According to (7),(8),(9), we then have SN, + sB,Ro > uvN.

In the presence of the precontagion P#0 and the infection [#0, we obtain the
following corollary:

Corollary .3. Let N>0, in the presence of the precontagion P#0 and the infection 1#0,
then :

— the system (1) admits the following endemic equilibrium point EI; = (S E',P,I',R")
with

_ WN(@+23)
- ﬁp(r+ )L) +ﬁiv'
v +2) (BN +5) + SR (By(r + 1) + rv) = wN(u + ) (r + 1))
= k(p+ )T+ D(Bpv(r + D) + Biv2) — srv(B,(r + ) + fv)
- (r+2) ((BN( + 5) + SR (B, (r +A) + fiv) — N (i + 8)(r + A))

B (u+s)r+ l)(ﬁpv(r +2A)+ ,Bivz) — srv(ﬁp(r +2A)+ ﬁiv)

v (BN + ) + SR (B, (r + ) + Biv) — WN(u+ 5) (r + 1))
)T+ DB+ ) + Biv2) — srv(B,(r+ 1) + fiv)
. Roa + rv ((SN(u +s) + sRO)(,Bp(r +2A)+ ,Biv) —uvN(Qu+s)(r+ )L))
k= (L+ 92+ D (Bv(r+ 1) + Biv2) — srv(B,(r+ 1) + fiv) ’
Witha = (p+ s)(x + D) (Bv(r + A) + fiv?) — srv(B,(r + A) + fiv) ;

—  Moreover, for all t>0 we have SN, (r+2) + 8NB;v > uvN(r + ).

Proof

If P#0 and 10, the third, fourth and fifth equations of the system (4) involve: E* = % I

VP R Ro+71I (r+A)Ry+1rvP
=—— and R* = = .
r+i u+s (u+s)(r+2a)

Carry E* and I® into the second equation of (4) and we get : S* = %.

Replacing S°, I* and R*® in the first equation of (4) we get :
o (r+2) (BNQL+ ) + SRo) (B, (r + 1) + fiv) — wN(u+ $)(r + 1))
T (W@ DBV + D) + Biv?) — srv(B,(r + A) + Biv)

By replacing P*in I* and E*, and I* in R®, we obtain the endemic equilibrium
point Ey as follows

Eg= (S"E"P',I'R") (10)
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. e _  VN(@+2)
Wlth S - ﬁp(r+)\.)+,8iv )

v +2) (SN +5) + SR (By(r + 1) + rv) — wN(u + ) (r + 1))

s uTsa+ V(B v(r + 1) + Biv2) — stv(B,(r + A) + Bv)

@+ D) (NG +3) + R (By(r + 1) + fiv) — wN(k + 8)(r + 1))

b= L+ )T +D(BvE + 1) + Biv2) —srv(B,(T + 1) + piv)
v (BN + ) + SR (B, (r + ) + Biv) — N+ 5) (r + 1))

L+ )T +D(B,vaE+ 1) + piv2) —srv(B,T+ 1) + iv)
 Roa + rv((8N(u+5) + SR (B, (r + 1) + fw) — pN(u + )(r + 1))
k= U+ $)2(r + D (Bv(r + A) + fiv2) — stv(B, (r + 1) + fiv)
Witha = (u+s)(r + l)([)’pv(r +2A)+ Bl-vz) — srv(ﬁp(r +2A)+

)

)

Biv)
SN

Let us note § >S° . —_—>

n
VN(r+2)
By r+ N+ fiv (D

From (11) we deduce: E*>Q0,P>0,I">0and R* > 0.
(12)

According to (11),(12), we then have : 8Nﬁp(r +A) + 8NB;v > pvN(r + 4).
(13)

5.6 The basic reproduction number R of the endemic model SEPIRS

To find the R of the SEPIRS endemic model, we apply the study condition in the
work (L.Chahrazed (2002)) on R:

— If Ry <1, the equilibrium point Es is locally asymptotically stable ;
— If Ry > 1, the equilibrium point Eo is unstable.

First, we calculate the Jacobian matrix of the linearized system (1) at the equilibrium
point Eqignoring the death compartment and we obtain :

] (8N‘;SRO , 0' 0, O, RO) —
_ Bp(8N+sRo)  B;(8N+sR)

—H 0 Nu Nu §
0 —k Bp(8N+sR) Bi(8N+sR,) 0
Nu Nu (14)
0 k -V 0 0
0 0 v —(r+2) 0
L0 0 0 T —(u+s)d
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The characteristic equation of the system (1) in the vicinity of the equilibrium point
Eo is as follows :

det(J — 0I)
__’u iy o B B, (8N + sR,) B B;(8N + sR,)
Nu Nu
0 k—o B, (8N + sR,) Bi(8N + sR;)
0 k -v—0 0 0
0 0 v —(r+2)-06 0
0 0 0 r —(p+s) -6l

He’s coming :

det(J — 6I) =—(u+e)(94+03(k+v+r+x+u+s)—ez(kv+kr+
Bpk(8N+sRg)
Nu )+
0 (kvr+kv)t+kvu+kvs+kus+ku)t+kls + prv+ srv+ Auv + siv +

[f’pkr(;l:+sR0)+ﬁpkl(:]l:+sRo) Bpk(811:11+sR0) Bpks(fj\ll\HsRo)) + kvur + srkv + KApy +

KvsA 4+ Bpkr(8N+sR) n Bpkrs(8N+sR,) n BpkA(8N+sRy) n BpksA(8N+sR,) n Bpkrv(8N+sRo))=
Nu N Np Np
0

KA+ Kkpu+Kks+vr+vA+ pv+sv+ur+sr+Ap+ si+

Then, the first eigenvalue is 8 = -u and it remains to study the equation :

0*+03(k+v+r+A+p+s)

—92<kv+kr+kl+ku+ks+vr+v)t+ Uv + sv + ur 4+ sr + Ap + s

B,k(8N + sRy)
B )

+0 <kvr + kvA + kvp + kvs + kus + kpA + kAs + prv+ srv+ Apv + siv

N ﬁpkr(SN + SR,) N Bpkl(SN + sR,) N Bpk (8N + SRy)
Nu Nu N
4 Bpks(8N + sRO)>

N

Bpkr(8N + sR,)  B,krs(8N + sR,)
+
N Nu

+ kvur + srkv + kAuv + kvsA +

BpkA(8N + sR,)
+
N
N BpksA(8N + sR,) N Bpkrv(8N + sR,)

Nu Nu
=0
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We assume that the above equation is the characteristic equation of the submatrix

Ji:
N1
_ ﬁp(SN + SRO) Bi (8N + SRO)
Ny Ny
= |k -V 0 0 (15)
0 Y —(r+2) 0
l 0 0 r —(p+ s)J

We have the trace (J;) =1k + v +r+ A+ pu+5s]<0,s0:

det(J;) = kv(r + D(u+s) — Bk (8N + sRo)(r + ) (i + )

Nu
B B:Kv(8N + sRy)(u + s) 20
Nu
RO, (r4 )+ i)

If det(J;) > O, we get : v(r+a)

According to the Varga and Poincaré-Lyapunov theorem of linearization in

(G.Sallet (2010)), R, is defined by the expression below :

3 (8N + sRO)(Bp (r+2)+ ,Biv)
o~ Npv(r + 1) '

5.7 Study of the stability of the equilibrium point £

(17)

1. Local stability
According to the work of L.Chahrazed (2002), we define the local stability of Eo :

Definition .2. We say that Ey is locally asymptotically stable if and only if the trace of the
Jacobian matrix in the neighbourhood of Ej is strictly negative and the determinant is strictly positive.

In effect
From equations (15) and (16) above, we deduce that :

trace (J;)= -k +v +r+ 1+u+s]<0;
Bpk(8N + sRp)(r + D) (n + s) _ Bikv(8N + sR,)(u + s) -

det(/1) = Kv(r+ A)(P— +5) — N Nu

0.

Thus, we see that if the conditions in (18) are met then the equilibrium point EO
of the system (1) is
unique and remains locally asymptotically stable.

2. Global stability

According to Lyapunov’s method in the works (Richard (1969)), (Moulay (1969))
and (Richard (2012)), we obtain the definitions below
We consider that U always designates a non-empty open of R™ (n € N™) containing O and
I a non-empty interval of R, not bounded on the right.
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Définition .8. Let f: I xU = R™ be a continuous application and a Cauchy-Lipschity
function, we associate the system : X = f(x, t) (*), Vto > 0, Vt > to, we have x € R™ et x(t, to, x0)
denotes a solution of the system such that x(to) = Xo.
An equilibrium point x, such that for all t, fix,, t) = 0 is (globally) attractive if the function
@(t, to, x0) tends to X, when t tends to +0o.

Définition .9. We say that x, is an asymptotically stable equilibrium point, if it is a stable
equilibrium point and if the domain of attraction of xo is a neighbourhood of xo.

Définition .10. Let x, be a nonempty compact of U, we consider the system (*).
We say that x, is a globally asymptotically stable equilibrium point for the system (*) if :

1. x, is stable on the system (*)
2. for all € I, and x€U, «x(t, to, xo) is defined for all t > to and
tliT d(x(t, to,xo,xe)) = 0.
According to the definitions (8), (9) and (10) concerning the global stability of the
point EQ, we proceed to the study of global stability :

Lemme 1. The number of susceptibles S in the model (1) verifies the relation (19) below:

) 6N + sR,
tler supS(t) <———. (19)
Proof .
. . . ﬁpSP ,Bisl
According to the model (1), we have the equation S = 6N + sR — uS — N TN

avec S(0) = Spand R(0) = RO. And it is obvious that :
S < 8N +sR — uS(t).
For ¢t > 0, in the absence of the infection I = 0 et RO > O, we obtain :
S < 8N +sR, — pS(t).
Assume that
Z =6N + SRO -
uS (o). (20)
With the initial condition Z(0) = Zo = So.
And we have Z(t), S(t)€ C0, +oo], Z(0) = Zo = So > 0 et t€[0,+00].
Solving the equation (20) which is an ordinary linear differential equation of the
first order in time t > 0 with Z(0) =Zo, we obtain :

6N + sR,
+—

Z(t) = Zye™ (1—e™),

Determining the limit of Z(t) when t goes to infinity, we obtain :

8N + sR
lim Z(f) = —— >0

t—+o0

So



Infectious Disease Behaviour Resulting In A Public Health Catastrophe, Bruce Masonova SOLOZAFY BEMENA | 539

i St < 1 Z(t)—8N+SR0
et P ) < il B |
We now have the following theorem :

Theorem .2‘ If (8N+SR0)(Bp(r+)L)+ﬁiV)
Nuv(r+2a)

(1) is globally asymptotically stable.

Proof :
Using (19) for n > 0 then there exists T; > 0 such that S(t) < WTSRO +n, fort> T

< 1 then the equilibrium point Eq of the system

According to the system (1), we obtain :

. 8N + sR . /8N + sR
E@®) < %”(%+ 77) P(t) +%(%+ n) I(t) — kE(t) ;

P(t) < kE(t) — vP(t);
I(t) <vP(t) — (r+0)I(t);
R() <Ry +7I(t) — (u+s)R().

Then for t > T}, we pose :

, S 6
J© =y (o + i) k@ + 42+ ) 10 - 0

K@® =kJ(@t) — vK();
L(t) = vK(t) — (r+ A)L(®).
M) = My +7L(t) — (u + s)M(D).

We obtain the matrix D defined in the following way :

D
8 SRy+un 8§ SRy+un
ke By (u + uN ) Bi (u + uN ) 0
0 v —(r+2a) 0
l 0 0 T —(u+ S)J

We have the trace(D)= —(k + v +r+ 1+ pu+s).
And for the determinant, we have :
det(D) = kv(r+ D(n+5) = Bk + D +s) (T + T4 ) — Bikv(u+
) SRy+un
S) (; + —HN )

(8N+5Ro)(Bp (r+1)+B;v)

If Nuv(r+2)

<1 andn<<<0, then det(D) > 0 implies :



540 | Journal of Research and Multidisciplinary, Volume, 5 Issue 1, March 2022

kv(r+ ) (u+s) — Bpk(r+ ) (u+s) (§+ ) — Bikv(u+s) (§+

uN
SRO'H”)) > 0

uN
(8N+5Ro)(Bp(r+1)+;v)

Npv(r+2d) <1l

It comes :

So

lim J(t) = 0, in comparison with the system (1) tli£n E(t) = 0 ;
tllin K(t) = 0, in comparison with the system (1) lirgl P(t) =0 ;
lim L(t) = 0, in comparison with the system (1) llm I(t) = 0;

t—>+o0

lim M(t) = M,, in comparison with the system (1) llm R(®) =

t—>+o0

AsS(t) < AN+sRo + 1, for t > T1.

And i lim S(O) = 8”*;’*0, then lim P(9) = 0, lim I(t) = 0 and
lim R(t) =Ry, forall >0, p>0and Ry > 0, there exists T, > O such that : P (t) < 6,

t—>+o0

I(t) < p and R(t) < Ry, for t > Ta.
Let T3, =max(Ty , T,), for t > T3, we get:

P(t) <6,I(t) < p, R(t) < Ryand S(t)
6N + sR,

<—4p 22
" (22)

8N+sR Bi (8N+sR
It comes : § > 6N+SRO—uS— (% 77)9—;(%“7)1)-

So $+ uS> SN +sR, -2 (8N+—:R°+n)9—%"(w+TSR°+n)p.

We consider that:
. ﬁp 8N+SRO _ B_l 8N+SR0 .
V(O + uV(e) = SN +sRy — 2 (—u +n)o-5 (—u +n)p;

V(T3) = (V),.
Solving this first-order linear differential equation, we get :

V(t)
= (V)e Ht-T3)

1 Bp (8N + sR, Bi (ISN+SR0 )
7 =" _ o~ H(t-T3)
”<8N+SR0 N( " +77)0 N " +nlp |(1-e ),
fort>Ts.

Let’s put 14 —%(WTs%+n)0+%(wTs%+n)p.

It comes : V(t) = (V)Oe_ﬂ(t_T3) + W (1 _ e—[t(t—T;;)).
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. SN+sRg—
So lim V(t) = —/—21
t—>+o K

Since S(t),V ()€ CY([0, +o0]) and S(T'3) = V (T3), we have: S(t) > V (¢), for t > T3.

Means that
lim_inf S(t) > MFoRoTi. (23)

From (22) and (23) if we choose 14, € and p very small and t> T4 > T3, then we
get:
8N+sRg
u

8N
_ﬁ<5'(t) < LR(’_}_@.
m n
. 8N+sR
Moving to the limit : lim S(¢t) = SR
t—>+oo 4

Hence the equilibrium point Eo of the system (1) is globally asymptotically stable.
5.8 Local stability of the equilibrium E*
By studying the local stability of E*, we obtain the following theorem :

Theorem .3. If Ry > 1, then the endemic equilibrium E™ of the system (1) is locally

asymptotically stable.
Proof :

According to the proposition in the works of L.Chahrazed (2002) and CHABOUR
(2000), we characterize the local stability of E*, as follows :

Proposition 2. The epidemic is locally asymptotically stable if and only if all the eigenvalues
of the Jacobian matrix ] have a negative real part.

According to the proposition (2), we define J as follows :

o BPP* _ :811* 0 . ,BpS’k _ ,B,S* S
N N N N
BpP” Bl BpS™ BiS”
0 k -V 0 0
0 0 v —(r+2) 0
0 0 0 r —(u+s).
The eigenvalues can be determined by solving the equation det(J - 8I) :
det(] — 6I)
[ BpP LB 0 _BST BiS )
N N N N
_ ﬁp_P + M —k—0 iBP_S* ﬁlS* 0
= N N N N
0 k —-v—20 0 0
0 0 v —(r+A)—0 0
0 0 0 r —(n+s)—6l
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So the characteristic function is written with the coefficients defined below ::
6° + A6* + B6* + C6* + DO + E = 0.
The coefficients are :
A=lu+k +v +1+ A+s+< (B +BpP") ;
B=(k +v +7r+ /1+u+s)(u + %(,B,,P*+ﬁ,-l*))+(r+ A+p+s)k +
v)

Futs) r+ 1) k(v =),

C = ((r+/1+u+s)(k+v)+(u+s)(r+ A)+ k(v—ﬁ';'vs*))(u+
~(BpP" + il") )

b o(uts)(k + v+ A)+k(ﬁ”TS*)(%(ﬁpP*+ﬁiI*))+(r+ A4+

s)(v—ﬁ”s*)

N

B gy
N

b

D (kv + 2+ pts)+ sl + )0+ ) =220+ 2+u+
s)—B‘TS*kv)(u+ %(ﬂpP*+,8iI*))+kv(u+s)(r+ A—ﬁiTS*)+
k(%(ﬁpP*+ﬁiI*)>((r+ A+p+ s)(ﬁ”TS*)+ﬁiTS*v);

E= <kv(u+s)<r+ A—ﬁis*))<u + %(ﬁpp*‘F,BiI*))

N
+hv(+s) <% (BpP* + ﬁil*)> ((7‘ + 1) (ﬁﬁ*) + %v)
_kvrs<%(ﬁpp* + ﬁil*)>-
BpS”

>0.

We have A>0Oand B,C, DL E>0ifv — .

Using the Routh-Hurwitz criterion in the work of (.M.M.ONDO (2012)), we have
:AB-C>0.

We calculate AB - C, we get :
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AB — C
1 2
=k +v+r+ A+u+s) <u+ N(ﬁpP*-l—ﬁiI*))

BiS”

Nkv

+k +v)r+ A+pu+s) |+

BpS”
+(u+s)r+ A)r+ A+p+s)+kk + v)(v——)

N
) o)

Therefore E* is locally asymptotically stable.

Conclusion

In spite of the limits induced by this model, it has a lot of originality to take into
account if we want to predict and study the new behaviours of emerging infectious diseases
within a population. Indeed, this model does not give a direct solution to an epidemic, but
thanks to the multitude of parameters (study of R, stability, equilibrium point) and the
simulation, it offers us the means to better understand the dynamics of the propagation of
infectious diseases caused by global warming. The proposed model helps us to make more
radical decisions to better prepare for the development of measures to maintain public

health.
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